Storm Water Management Plan For Priority Projects (Major SWMP) | Project Name | Elders Agricultural L-Grading Permit | |--|--------------------------------------| | Permit Number (Land Development Projects): | L - 15206 / ER07-01-004 | | Work Authorization Number (CIP): | | | Applicant: | Wayne & Carol Elders | | Applicant's Address: | 40401-A De Luz Road, Fallbrook, Ca. | | Plan Prepared By: (Leave blank if same as | MLB Engineering | | applicant) | | | Date: | 3/20/2008 | | Revision Date(If applicable): | | The County of San Diego Watershed Protection, Storm Water Management, and Discharge Control Ordinance (WPO) (Ordinance No. 9424) requires all applications for a permit or approval associated with a Land Disturbance Activity must be accompanied by a Storm Water Management Plan (SWMP) (section 67.804.f). The purpose of the SWMP is to describe how the project will minimize the short and long-term impacts on receiving water quality. Projects that meet the criteria for a priority project are required to prepare a Major SWMP. Since the SWMP is a living document, revisions may be necessary during various stages of approval by the County. Please provide the approval information requested below. | Project Review Stage | Does the SWMP need revisions? | | If YES, Provide
Revision Date | |----------------------|-------------------------------|----|----------------------------------| | | YES | NO | Kevision Date | | | | | | | | | | | | | | | | Instructions for a Major SWMP can be downloaded at http://www.co.san-diego.ca.us/dpw/stormwater/susmp.html. Completion of the following checklist and attachments will fulfill the requirements of a Major SWMP for the project listed above. ### PROJECT DESCRIPTION Please provide a brief description of the project in the following box. The 10-acre project site is located northwesterly of Calle De Luz, in the De Luz area of the unincorporated territory of the County of San Diego (See Attachment 1). The project is approximately 0.25 miles northwest of the intersection of Jones Road and Daily Road. And about 0.5 miles southwest of the De Luz Elementary School. This project will consist of the re-establishment of an avocado grove on a previously disturbed area on the site. Water and electricity area already present on site. In the past, prior to the present owners acquiring the property a large area was disturbed by illegal grading activities. The plan L-15206 attempts to quantify the amount of grading that occurred, but currently there is no grading or clearing activities planned. This project will not create any additional impervious areas. ### PRIORITY PROJECT DETERMINATION Please check the box that best describes the project. Does the project meet one of the following criteria? | PRIORITY PROJECT | YESNO | |--|----------| | Redevelopment within the County Urban Area that creates or adds at least 5,000 net square feet of additional impervious surface area | ✓ | | Residential development of more than 10 units | ✓ | | Commercial developments with a land area for development of greater than 100,000 square feet | ✓ | | Automotive repair shops | ✓ | | Restaurants, where the land area for development is greater than 5.000 square feet | ✓ | | Hillside development, in an area with known erosive soil conditions, where there will be grading on any natural slope that is twenty-five percent or greater, if the development creates 5,000 square feet or more of impervious surface | \ | | Environmentally Sensitive Areas: All development and redevelopment located within or directly adjacent to or discharging directly to an environmentally sensitive area (where discharges from the development or redevelopment will enter receiving waters within the environmentally sensitive area), which either creates 2,500 square feet of impervious surface on a proposed project site or increases the area of imperviousness of a proposed project site to 10% or more or its naturally occurring condition. | ✓ | | Parking Lots 5,000 square feet or more or with 15 parking spaces or more and potentially exposed to urban runoff | ✓ | | Streets, roads, highways, and freeways which would create a new paved surface that is 5,000 square feet or greater | ✓ | **Limited Exclusion:** Trenching and resurfacing work associated with utility projects are not considered priority projects. Parking lots, buildings and other structures associated with utility projects are subject to SUSMP requirements if one or more of the criteria above are met. If you answered **NO** to all the questions, then **STOP.** Please complete a Minor SWMP for your project. ### STORMWATER MANAGEMENT PLAN (SWMP) FOR MINOR PROJECTS The County of San Diego Watershed Protection, Storm Water Management, and Discharge Control Ordinance (WPO) (Ordinance No. 9589) requires all applications for a permit or approval associated with a Land Disturbance Activity must be accompanied by a Storm Water Management Plan (SWMP) (section 67.804.f). The purpose of the SWMP is to describe how the project will minimize the short and long-term impacts on receiving water quality. The WPO does not set a minimum size or type of project requiring a SWMP. The following types of projects/permits are generally not significant contributors to pollution loading after construction is complete: Construction Right of Way Permits, Encroachment Permits, Minor Excavation Permits, Variances, Boundary Adjustments, Minor Use Permits for Cellular Facilities, and Residential Tentative Parcel Maps. As such, these projects may not require post construction Best Management Practices (BMPs) that require long-term maintenance. This form is to be submitted for these types of projects to fulfill the SWMP requirement of the WPO (section 67.804.f). It is a living document that can be modified at any time even after construction is complete. Changes to the SWMP are documented on the attached Addendum sheet. Please be aware that completion of this form does not remove the applicant's responsibility from addressing BMPs during construction. If it is determined during the review process that the project has the potential to significantly impact water quality after construction, then a more detailed SWMP will be required that addresses post-construction BMPs. ### Please describe the proposed project | Project Name: | Elders Agricultural L-Grading Permit | |---------------------------------|--| | Permit Number: | L-15206 / ER07-01-004 | | Project Details: | Grading for agricultural purposes. | | • | | | Project Location: | De Luz | | Assessors Parcel No.: | 101-562-07 | | Address: | 39693 Calle De Luz | | Hydrologic Unit*: | 902.00 Santa Margarita | | Hydrologic Subarea**: | 902.21 De Luz Creek Hydrologic Subarea | | Any previous stormwater action: | No | Τ - * Hydrologic Unit and Area may be determined from the maps found at the following link: http://www.projectcleanwater.org/html/watersheds. - ** Hydrologic Subarea may be determined from the maps found at the following links: http://www.stormwater.water-programs.com/Webctswpfinal/Indexfinal.htm; hftp://endeavor.des.ucdavis.edu/wqsid/wbiist.asp?region.pkev=9 | Unique Site Features: | (Check all that apply.) | |-----------------------|-------------------------| |-----------------------|-------------------------| - Project is in a river, creek, or lake. - □ Directly discharges to a river, creek, or lake. - □ Project is 200 feet from a river, creek, or lake. - □ Runoff will directly discharge into a storm drain. - √ There are no unique site features. ### Individual designated as stormwater protection contact for the permit. | Name: Wayne or Carol Elders | | | | |------------------------------|-----------------------|--|--| | Address: 40401-A De Luz Road | | | | | City, State, ZIP | California, CA, 92028 | | | | Phone Number | 760-728-9572 | | | | Cellular Phone Number: | | | | | Fax Number: | 760 728-5835 | | | | | | | | ### **A. CONSTRUCTION PHASE** - 1. Potential Pollutant Sources During Construction: (Check all that apply.) - √ There will be soil-disturbing activities that will result in exposed soil areas. This includes minor grading and trenching. - □ There will be asphalt paving including patching. - □ There will be slurries from mortar mixing, coring, or PCC saw cutting and placement. - □ There will be solid wastes from PCC demolition and removal, wall construction, or form work. - $\sqrt{}$ There might be stockpiling (soil, compost, asphalt concrete, solid waste) for over 24 hours. - □ There will be dewatering operations. - √ There will be temporary on-site storage of construction materials, including mortar mix, raw landscaping and soil stabilization materials, treated lumber, rebar, and plated metal fencing materials. - $\sqrt{}$ There might be trash generated from the project. - □ This project will involve activities that are not considered to generate pollutants. Includes placement of temporary signs (i.e. elections, events). ### **2. List the construction BMPs that may be used:** (Check all that apply.) □ No BMPs needed. Activities are not considered to generate pollutants. The BMPs
selected are those that will be implemented during construction of the project. The applicant is responsible for the placement and maintenance of the BMPs selected. Attach descriptions of the BMPs and their application (available at the DPW counter) as Attachment A. | □ Silt Fence | □ Desilting Basin | | |--|--|--| | □ Fiber Rolls | $\sqrt{\ }$ Gravel Bag Berm | | | □ Street Sweeping and Vacuuming | □ Sandbag Barrier | | | □ Storm Drain Inlet Protection | $\sqrt{}$ Material Delivery and Storage | | | $\sqrt{}$ Stockpile Management | $\sqrt{\ }$ Spill Prevention and Control | | | | √ Concrete Waste Management | | | □ Stabilized Construction Entrance/Exit | □ Water Conservation Practices | | | □ Dewatering Operations | □ Paving and Grinding Operations | | | □ Vehicle and Equipment Maintenance √ Any minor slopes created incidental to construction and not subject to a major or minor grading permit shall be protected by covering with plastic or tarp prior to a rain event, and shall have vegetative cover reestablished within 180 days of completion of the slope and prior to final building approval. | | | ### **B. POST-CONSTRUCTION PHASE** ATTENTION: THIS PROJECT MAY BE EXEMPT FROM POST CONSTRUCTION BMP REQUIREMENTS IF ONE OR MORE OF THE FOLLOWING THREE STATEMENTS APPLY. (Check all that apply.) My project is not located within the County Urban Area as defined by the map that is in Appendix B of the County Watershed Protection, Stormwater Management and Discharge Control Ordinance (map on file with the Clerk of the Board as document number 0768626), AND my project will not route stormwater run-off into or through an underground conveyance other than a road-crossing culvert. I have attached project plans that show the location of this project, and that demonstrate that stormwater run-off will be carried above ground only, except at road crossings. ## IF YOU CHECKED OFF THE STATEMENT ABOVE, SKIP TO ITEM D. OTHERWISE COMPLETE ALL REMAINING SECTIONS. My project is physically complete or substantially complete, and the prior work on the project has all been done pursuant to or as required by a valid County permit or approval. The permit or approval I am seeking is not related to the construction of any stormwater management device, and will not be followed by any additional construction that will increase the impervious surface of this project or change the post-construction uses of the project area. I have attached photographs showing the current state of construction in the areas of the project to which this application for a permit or approval applies. My project has no potential to add pollutants to stormwater after construction is complete, AND will not affect the flow rate or velocity of stormwater run off after construction is complete. I have attached project plans that demonstrate that the project will not significantly increase impervious surfaces in the project area and will not add any impervious surfaces that are directly connected to the stormwater conveyance system. These plans also show the anticipated post-construction use of the project area. I understand that this application will not be exempt from the requirement to submit a post-construction stormwater management plan if County staff conclude that these post-construction uses of the project area have the potential to add pollutants to stormwater after construction is complete. I acknowledge that at such time that staff makes this determination, I shall be notified and required to submit the appropriate post-construction SWMP. ### List the post-construction BMPs that will be used: (Check all that apply.) |
There will be permanent landscaping as part of this project. The property owner will maintain the landscaping. | |---| | Asphalt concrete will be placed over the disturbed areas designated as roadway or parking lots. | | PCC will be placed over the disturbed areas designated as either roadway, parking lots or building pads. | | Rock slope protection will be placed along channel banks. | |
Outlet Protection/velocity dissipation devices will be placed at storm drain outfalls to reduce the velocity of the flow. | | This project will result in a reduction of the amount of asphalt concrete or PCC within the project. | | Either asphalt concrete, PCC or porous pavement will be placed over a dirt driveway. | ### C. MINISTERIAL PERMITS (Per Part G.8 of Ordinance No. 9426) Please complete this section C if the proposed project is a discretionary permit subject to future ministerial permits, be aware that additional requirements may have to be fulfilled in order to satisfy the requirements of the WPO. Provide information for the following steps to determine the impervious area for this project: | A. Total size of construction area 10 (A | cres or ft2 whichever is appropriate.) | |--|--| | B. Total impervious area (including roof tops) b | efore construction 0 (Acres or fi2) | | C. Total impervious area (including roof tops) a | fter construction 0 (Acres or ft2) | | Percent impervious before construction: B/A = | 0% | | Percent impervious after construction: C/A = $\underline{0}$ | % | | | | For proposals that increase impervious surface, a detailed drawing showing drainage from these surfaces being directed to flat vegetated areas not less that 15 feet wide in the - direction of runoff flow. A detailed drawing of the proposed activity showing that it will not occupy any of the areas currently used for surface drainage flow, filtering, or infiltration. - New walkways, trails, and alleys and other low-traffic areas shall be constructed with permeable surfaces, such as pervious concrete, porous asphalt, unit pavers, or granular materials that allow infiltration. If the proposed project is subject to future ministerial permits, please be aware that additional requirements may have to be fulfilled in order to satisfy the requirements of the WPO. ### **D. ATTACHMENTS** - 1. Please Attach a Project Map or Plan. - 2. If applicable, construction BMPs from Caltrans Storm Water Quality Handbooks Construction Site Best Management Practices Manual, November 2000. Available at the DPW Counter, 5201 Ruffin Road, Suite B, San Diego, CA 92123 or on the Internet at http://www.dot.ca.gov/hg/construc/stormwater/CSBMPM 303 Final.pd ### APPLICANT'S CERTIFICATION OF SWMP I certify under a penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. | | | March 20, 2008 | | |--------------------|-----------------------|------------------|--| | Signature | | Date | | | | | | | | Michael L. Benesh. | R.C.E. 37892 exp 3/09 | 760-741-3577 | | | Name and Title | | Telephone Number | | # **STOP** The following addendum sheet is only to be completed if changes to the Stormwater Management Plan for Minor Projects form Is necessary. ### **ADDENDUM SHEET** ## Please fill in | Date: | _ | |---|---| | Project Name: | | | Permit Number: | | | Project Location: | | | Address: | | | Addross: | | | City, State, ZIP: | | | A modification to the SWMP is | necessary for the following reason(s): | | | | | | | | | | | | | | | | | direction or supervision in accorproperly gather and evaluate the persons who manage the system information, the information sull and complete. I am aware that | that this document and all attachments were prepared under my ordance with a system designed to assure that qualified personnel ne information submitted. Based on my inquiry of the person or those persons directly responsible for gathering the bmitted is, to the best of my knowledge and belief, true, accurate there are significant penalties for submitting false information, and imprisonment for knowing violations. | | | | | Signature | Date | | Name and Title | Telephone Number | ### **Description and Purpose** A gravel bag berm is a series of gravel-filled bags placed on a level contour to intercept sheet flows. Gravel bags pond sheet flow runoff, allowing sediment to settle out, and release runoff slowly as sheet flows, preventing erosion. ### **Suitable Applications** Gravel bag berms may be suitable: - As a linear sediment control measure: - Below the toe of slopes and erodible slopes - As sediment traps at culvert/pipe outlets - Below other small cleared areas - Along the perimeter of a site - Down
slope of exposed soil areas - Around temporary stockpiles and spoil areas - Parallel to a roadway to keep sediment off paved areas - Along streams and channels - As linear erosion control measure: ### **Objectives** **EC** Erosion Control SE Sediment Control TC Tracking Control WE Wind Erosion Control NS Non-Stormwater Management Control WM Waste Management and Materials Pollution Control #### Legend: Primary Objective √ Secondary Objective ### **Targeted Constituents** Sediment **Nutrients** Trash Metals Bacteria Oil and Grease **Organics** #### **Potential Alternatives** SE-1 Silt Fence SE-5 Fiber Roll SE-8 Sandbag Barrier SE-9 Straw Bale Barrier - Along the face and at grade breaks of exposed and erodible slopes to shorten slope length and spread runoff as sheet flow - At the top of slopes to divert runoff away from disturbed slopes - As check dams across mildly sloped construction roads #### Limitations - Gravel berms may be difficult to remove. - Removal problems limit their usefulness in landscaped areas. - Gravel bag berm may not be appropriate for drainage areas greater than 5 acres. - Runoff will pond upstream of the filter, possibly causing flooding if sufficient space does not exist. - Degraded gravel bags may rupture when removed, spilling contents. - Installation can be labor intensive. - Berms may have limited durability for long-term projects. - When used to detain concentrated flows, maintenance requirements increase. ### **Implementation** #### General A gravel bag berm consists of a row of open graded gravel—filled bags placed on a level contour. When appropriately placed, a gravel bag berm intercepts and slows sheet flow runoff, causing temporary ponding. The temporary ponding provides quiescent conditions allowing sediment to settle. The open graded gravel in the bags is porous, which allows the ponded runoff to flow slowly through the bags, releasing the runoff as sheet flows. Gravel bag berms also interrupt the slope length and thereby reduce erosion by reducing the tendency of sheet flows to concentrate into rivulets, which erode rills, and ultimately gullies, into disturbed, sloped soils. Gravel bag berms are similar to sand bag barriers, but are more porous. #### Design and Layout - Locate gravel bag berms on level contours. - Slopes between 20:1 and 2:1 (H:V): Gravel bags should be placed at a maximum interval of 50 ft (a closer spacing is more effective), with the first row near the slope toe. - Slopes 2:1 (H:V) or steeper: Gravel bags should be placed at a maximum interval of 25 ft (a closer spacing is more effective), with the first row placed the slope toe. - Turn the ends of the gravel bag barriers up slope to prevent runoff from going around the berm. - Allow sufficient space up slope from the gravel bag berm to allow ponding, and to provide room for sediment storage. - For installation near the toe of the slope, consider moving the gravel bag barriers away from the slope toe to facilitate cleaning. To prevent flows behind the barrier, bags can be placed perpendicular to a berm to serve as cross barriers. - Drainage area should not exceed 5 acres. - In Non-Traffic Areas: - Height = 18 in. maximum - Top width = 24 in. minimum for three or more layer construction - Top width = 12 in. minimum for one or two layer construction - Side slopes = 2:1 or flatter - In Construction Traffic Areas: - Height = 12 in. maximum - Top width = 24 in. minimum for three or more layer construction. - Top width = 12 in. minimum for one or two layer construction. - Side slopes = 2:1 or flatter. - Butt ends of bags tightly - On multiple row, or multiple layer construction, overlapp butt joints of adjacent row and row beneath. - Use a pyramid approach when stacking bags. #### Materials - **Bag Material:** Bags should be woven polypropylene, polyethylene or polyamide fabric or burlap, minimum unit weight of 4 ounces/yd², Mullen burst strength exceeding 300 lb/in² in conformance with the requirements in ASTM designation D3786, and ultraviolet stability exceeding 70% in conformance with the requirements in ASTM designation D4355. - **Bag Size:** Each gravel-filled bag should have a length of 18 in., width of 12 in., thickness of 3 in., and mass of approximately 33 lbs. Bag dimensions are nominal, and may vary based on locally available materials. - *Fill Material:* Fill material should be 0.5 to 1 in. Class 2 aggregate base, clean and free from clay, organic matter, and other deleterious material, or other suitable open graded, non-cohesive, porous gravel. #### **Costs** Gravel filter: Expensive, since off-site materials, hand construction, and demolition/removal are usually required. Material costs for gravel bags are average of \$2.50 per empty gravel bag. Gravel costs range from \$20-\$35 per yd 3 . ### **Inspection and Maintenance** - Inspect BMPs prior to forecast rain, daily during extended rain events, after rain events, weekly during the rainy season, and at two-week intervals during the non-rainy season. - Gravel bags exposed to sunlight will need to be replaced every two to three months due to degrading of the bags. - Reshape or replace gravel bags as needed. - Repair washouts or other damage as needed. - Sediment that accumulates in the BMP must be periodically removed in order to maintain BMP effectiveness. Sediment should be removed when the sediment accumulation reaches one-third of the barrier height. Sediment removed during maintenance may be incorporated into earthwork on the site or disposed at an appropriate location. - Remove gravel bag berms when no longer needed. Remove sediment accumulation and clean, re-grade, and stabilize the area. Removed sediment should be incorporated in the project or disposed of. #### References Handbook of Steel Drainage and Highway Construction, American Iron and Steel Institute, 1983. Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. Stormwater Pollution Plan Handbook, First Edition, State of California, Department of Transportation Division of New Technology, Materials and Research, October 1992. Material Use WM-2 ### **Objectives** EC Erosion Control SE Sediment Control TC Tracking Control WE Wind Erosion Control Non-Stormwater Management Control Waste Management and Materials Pollution Control #### Legend: - **✓** Primary Objective - ✓ Secondary Objective ### **Description and Purpose** Prevent or reduce the discharge of pollutants to the storm drain system or watercourses from material use by using alternative products, minimizing hazardous material use onsite, and training employees and subcontractors. ### **Suitable Applications** This BMP is suitable for use at all construction projects. These procedures apply when the following materials are used or prepared onsite: - Pesticides and herbicides - Fertilizers - Detergents - Plaster - Petroleum products such as fuel, oil, and grease - Asphalt and other concrete components - Other hazardous chemicals such as acids, lime, glues, adhesives, paints, solvents, and curing compounds - Concrete compounds - Other materials that may be detrimental if released to the environment ### **Targeted Constituents** | Sediment | ✓ | |----------------|---| | Nutrients | ✓ | | Trash | ✓ | | Metals | ✓ | | Bacteria | | | Oil and Grease | ✓ | | | | #### **Potential Alternatives** None **Organics** WM-2 Material Use #### Limitations Safer alternative building and construction products may not be available or suitable in every instance. ### **Implementation** The following steps should be taken to minimize risk: - Minimize use of hazardous materials onsite. - Follow manufacturer instructions regarding uses, protective equipment, ventilation, flammability, and mixing of chemicals. - Train personnel who use pesticides. The California Department of Pesticide Regulation and county agricultural commissioners license pesticide dealers, certify pesticide applicators, and conduct onsite inspections. - Do not over-apply fertilizers, herbicides, and pesticides. Prepare only the amount needed. Follow the recommended usage instructions. Over-application is expensive and environmentally harmful. Unless on steep slopes, till fertilizers into the soil rather than hydro seeding. Apply surface dressings in several smaller applications, as opposed to one large application, to allow time for infiltration and to avoid excess material being carried offsite by runoff. Do not apply these chemicals just before it rains. - Train employees and subcontractors in proper material use. - Supply Material Safety Data Sheets (MSDS) for all materials. - Dispose of latex paint and paint cans, used brushes, rags, absorbent materials, and drop cloths, when thoroughly dry and are no longer hazardous, with other construction debris. - Do not remove the original product label; it contains important safety and disposal information. Use the entire product before disposing of the container. - Mix paint indoors or in a containment area. Never clean paintbrushes or rinse paint containers into a street, gutter, storm drain, or watercourse. Dispose of any paint thinners, residue, and sludge(s) that cannot be recycled, as hazardous waste. - For water-based paint, clean brushes to the extent practicable, and rinse to a drain leading to a sanitary sewer where permitted, or into a concrete washout pit or temporary sediment trap. For oil-based paints, clean brushes to the extent practicable, and filter and reuse thinners and solvents. - Use recycled and less hazardous products when practical. Recycle residual paints, solvents, non-treated lumber, and other materials. - Use materials only where and when needed to complete the construction activity. Use safer alternative materials as much as possible. Reduce or eliminate use of hazardous materials onsite when practical. Material Use WM-2 Require contractors to complete the "Report of Chemical Spray Forms" when
spraying herbicides and pesticides. - Keep an ample supply of spill clean up material near use areas. Train employees in spill clean up procedures. - Avoid exposing applied materials to rainfall and runoff unless sufficient time has been allowed for them to dry. #### Costs All of the above are low cost measures. ### **Inspection and Maintenance** - Inspect and verify that activity—based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect weekly during the rainy season and at two—week intervals in the non-rainy season to verify continued BMP implementation. - Maintenance of this best management practice is minimal. - Spot check employees and subcontractors throughout the job to ensure appropriate practices are being employed. #### References Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995. Coastal Nonpoint Pollution Control Program: Program Development and Approval Guidance, Working Group Working Paper; USEPA, April 1992. Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. Stormwater Management for Construction Activities; Developing Pollution Prevention Plans and Best Management Practice, EPA 832-R-92005; USEPA, April 1992. ### **Objectives** EC Erosion ControlSE Sediment Control TC Tracking Control WE Wind Erosion Control NS Non-Stormwater Management Control WM Waste Management and Materials Pollution Control ### Legend: - **✓** Primary Objective - ✓ Secondary Objective ### **Description and Purpose** Stockpile Management procedures and practices are designed to reduce or eliminate air and stormwater pollution from stockpiles of soil, paving materials such as portland cement concrete (PCC) rubble, asphalt concrete (AC), asphalt concrete rubble, aggregate base, aggregate sub base or pre-mixed aggregate, asphalt minder (so called "cold mix" asphalt), and pressure treated wood. #### **Suitable Applications** Implement in all projects that stockpile soil and other materials. #### Limitations None identified. #### **Implementation** Protection of stockpiles is a year-round requirement. To properly manage stockpiles: - Locate stockpiles a minimum of 50 ft away from concentrated flows of stormwater, drainage courses, and inlets. - Protect all stockpiles from stormwater runon using a temporary perimeter sediment barrier such as berms, dikes, fiber rolls, silt fences, sandbag, gravel bags, or straw bale barriers. ### **Targeted Constituents** | Sediment | ✓ | |----------------|---| | Nutrients | ✓ | | Trash | ✓ | | Metals | ✓ | | Bacteria | | | Oil and Grease | ✓ | #### **Potential Alternatives** None **Organics** - Implement wind erosion control practices as appropriate on all stockpiled material. For specific information, see WE-1, Wind Erosion Control. - Manage stockpiles of contaminated soil in accordance with WM-7, Contaminated Soil Management. - Place bagged materials on pallets and under cover. ### Protection of Non-Active Stockpiles Non-active stockpiles of the identified materials should be protected further as follows: ### Soil stockpiles - During the rainy season, soil stockpiles should be covered or protected with soil stabilization measures and a temporary perimeter sediment barrier at all times. - During the non-rainy season, soil stockpiles should be covered or protected with a temporary perimeter sediment barrier prior to the onset of precipitation. Stockpiles of Portland cement concrete rubble, asphalt concrete, asphalt concrete rubble, aggregate base, or aggregate sub base - During the rainy season, the stockpiles should be covered or protected with a temporary perimeter sediment barrier at all times. - During the non-rainy season, the stockpiles should be covered or protected with a temporary perimeter sediment barrier prior to the onset of precipitation. ### Stockpiles of "cold mix" - During the rainy season, cold mix stockpiles should be placed on and covered with plastic or comparable material at all times. - During the non-rainy season, cold mix stockpiles should be placed on and covered with plastic or comparable material prior to the onset of precipitation. Stockpiles/Storage of pressure treated wood with copper, chromium, and arsenic or ammonical, copper, zinc, and arsenate - During the rainy season, treated wood should be covered with plastic or comparable material at all times. - During the non-rainy season, treated wood should be covered with plastic or comparable material at all times and cold mix stockpiles should be placed on and covered with plastic or comparable material prior to the onset of precipitation. ### Protection of Active Stockpiles Active stockpiles of the identified materials should be protected further as follows: - All stockpiles should be protected with a temporary linear sediment barrier prior to the onset of precipitation. - Stockpiles of "cold mix" should be placed on and covered with plastic or comparable material prior to the onset of precipitation. #### **Costs** All of the above are low cost measures. ### **Inspection and Maintenance** - Inspect and verify that activity—based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect weekly during the rainy season and of two-week intervals in the non-rainy season to verify continued BMP implementation - Repair and/or replace perimeter controls and covers as needed to keep them functioning properly. #### References Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. ### **Description and Purpose** Prevent or reduce the discharge of pollutants to drainage systems or watercourses from leaks and spills by reducing the chance for spills, stopping the source of spills, containing and cleaning up spills, properly disposing of spill materials, and training employees. This best management practice covers only spill prevention and control. However, WM-1, Materials Delivery and Storage, and WM-2, Material Use, also contain useful information, particularly on spill prevention. For information on wastes, see the waste management BMPs in this section. ### **Suitable Applications** This BMP is suitable for all construction projects. Spill control procedures are implemented anytime chemicals or hazardous substances are stored on the construction site, including the following materials: - Soil stabilizers/binders - Dust palliatives - Herbicides - Growth inhibitors - Fertilizers - Deicing/anti-icing chemicals ### **Objectives** | EC | Erosion Control | | |----|---|---| | SE | Sediment Control | | | TC | Tracking Control | | | WE | Wind Erosion Control | | | NS | Non-Stormwater
Management Control | | | WM | Waste Management and
Materials Pollution Control | ✓ | #### Legend: - ✓ Primary Objective - √ Secondary Objective ### **Targeted Constituents** | Sediment | ✓ | |----------------|---| | Nutrients | ✓ | | Trash | ✓ | | Metals | ✓ | | Bacteria | | | Oil and Grease | ✓ | | Organics | ✓ | #### **Potential Alternatives** None - Fuels - Lubricants - Other petroleum distillates #### Limitations - In some cases it may be necessary to use a private spill cleanup company. - This BMP applies to spills caused by the contractor and subcontractors. - Procedures and practices presented in this BMP are general. Contractor should identify appropriate practices for the specific materials used or stored onsite ### **Implementation** The following steps will help reduce the stormwater impacts of leaks and spills: #### **Education** - Be aware that different materials pollute in different amounts. Make sure that each employee knows what a "significant spill" is for each material they use, and what is the appropriate response for "significant" and "insignificant" spills. - Educate employees and subcontractors on potential dangers to humans and the environment from spills and leaks. - Hold regular meetings to discuss and reinforce appropriate disposal procedures (incorporate into regular safety meetings). - Establish a continuing education program to indoctrinate new employees. - Have contractor's superintendent or representative oversee and enforce proper spill prevention and control measures. #### General Measures - To the extent that the work can be accomplished safely, spills of oil, petroleum products, substances listed under 40 CFR parts 110,117, and 302, and sanitary and septic wastes should be contained and cleaned up immediately. - Store hazardous materials and wastes in covered containers and protect from vandalism. - Place a stockpile of spill cleanup materials where it will be readily accessible. - Train employees in spill prevention and cleanup. - Designate responsible individuals to oversee and enforce control measures. - Spills should be covered and protected from stormwater runon during rainfall to the extent that it doesn't compromise clean up activities. - Do not bury or wash spills with water. - Store and dispose of used clean up materials, contaminated materials, and recovered spill material that is no longer suitable for the intended purpose in conformance with the provisions in applicable BMPs. - Do not allow water used for cleaning and decontamination to enter storm drains or watercourses. Collect and dispose of contaminated water in accordance with WM-10, Liquid Waste Management. - Contain water overflow or minor water spillage and do not allow it to discharge into drainage facilities or watercourses. - Place proper storage, cleanup, and spill reporting instructions for hazardous materials stored or used on the project site in an open, conspicuous, and
accessible location. - Keep waste storage areas clean, well organized, and equipped with ample cleanup supplies as appropriate for the materials being stored. Perimeter controls, containment structures, covers, and liners should be repaired or replaced as needed to maintain proper function. #### Cleanup - Clean up leaks and spills immediately. - Use a rag for small spills on paved surfaces, a damp mop for general cleanup, and absorbent material for larger spills. If the spilled material is hazardous, then the used cleanup materials are also hazardous and must be sent to either a certified laundry (rags) or disposed of as hazardous waste. - Never hose down or bury dry material spills. Clean up as much of the material as possible and dispose of properly. See the waste management BMPs in this section for specific information. #### **Minor Spills** - Minor spills typically involve small quantities of oil, gasoline, paint, etc. which can be controlled by the first responder at the discovery of the spill. - Use absorbent materials on small spills rather than hosing down or burying the spill. - Absorbent materials should be promptly removed and disposed of properly. - Follow the practice below for a minor spill: - Contain the spread of the spill. - Recover spilled materials. - Clean the contaminated area and properly dispose of contaminated materials. #### Semi-Significant Spills Semi-significant spills still can be controlled by the first responder along with the aid of other personnel such as laborers and the foreman, etc. This response may require the cessation of all other activities. - Spills should be cleaned up immediately: - Contain spread of the spill. - Notify the project foreman immediately. - If the spill occurs on paved or impermeable surfaces, clean up using "dry" methods (absorbent materials, cat litter and/or rags). Contain the spill by encircling with absorbent materials and do not let the spill spread widely. - If the spill occurs in dirt areas, immediately contain the spill by constructing an earthen dike. Dig up and properly dispose of contaminated soil. - If the spill occurs during rain, cover spill with tarps or other material to prevent contaminating runoff. ### Significant/Hazardous Spills - For significant or hazardous spills that cannot be controlled by personnel in the immediate vicinity, the following steps should be taken: - Notify the local emergency response by dialing 911. In addition to 911, the contractor will notify the proper county officials. It is the contractor's responsibility to have all emergency phone numbers at the construction site. - Notify the Governor's Office of Emergency Services Warning Center, (916) 845-8911. - For spills of federal reportable quantities, in conformance with the requirements in 40 CFR parts 110,119, and 302, the contractor should notify the National Response Center at (800) 424-8802. - Notification should first be made by telephone and followed up with a written report. - The services of a spills contractor or a Haz-Mat team should be obtained immediately. Construction personnel should not attempt to clean up until the appropriate and qualified staffs have arrived at the job site. - Other agencies which may need to be consulted include, but are not limited to, the Fire Department, the Public Works Department, the Coast Guard, the Highway Patrol, the City/County Police Department, Department of Toxic Substances, California Division of Oil and Gas, Cal/OSHA, etc. #### Reporting - Report significant spills to local agencies, such as the Fire Department; they can assist in cleanup. - Federal regulations require that any significant oil spill into a water body or onto an adjoining shoreline be reported to the National Response Center (NRC) at 800-424-8802 (24 hours). www.cabmphandbooks.com Use the following measures related to specific activities: ### Vehicle and Equipment Maintenance - If maintenance must occur onsite, use a designated area and a secondary containment, located away from drainage courses, to prevent the runon of stormwater and the runoff of spills. - Regularly inspect onsite vehicles and equipment for leaks and repair immediately - Check incoming vehicles and equipment (including delivery trucks, and employee and subcontractor vehicles) for leaking oil and fluids. Do not allow leaking vehicles or equipment onsite. - Always use secondary containment, such as a drain pan or drop cloth, to catch spills or leaks when removing or changing fluids. - Place drip pans or absorbent materials under paving equipment when not in use. - Use absorbent materials on small spills rather than hosing down or burying the spill. Remove the absorbent materials promptly and dispose of properly. - Promptly transfer used fluids to the proper waste or recycling drums. Don't leave full drip pans or other open containers lying around - Oil filters disposed of in trashcans or dumpsters can leak oil and pollute stormwater. Place the oil filter in a funnel over a waste oil-recycling drum to drain excess oil before disposal. Oil filters can also be recycled. Ask the oil supplier or recycler about recycling oil filters. - Store cracked batteries in a non-leaking secondary container. Do this with all cracked batteries even if you think all the acid has drained out. If you drop a battery, treat it as if it is cracked. Put it into the containment area until you are sure it is not leaking. #### Vehicle and Equipment Fueling - If fueling must occur onsite, use designate areas, located away from drainage courses, to prevent the runon of stormwater and the runoff of spills. - Discourage "topping off" of fuel tanks. - Always use secondary containment, such as a drain pan, when fueling to catch spills/leaks. #### Costs Prevention of leaks and spills is inexpensive. Treatment and/ or disposal of contaminated soil or water can be quite expensive. #### **Inspection and Maintenance** - Inspect and verify that activity—based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect weekly during the rainy season and of two-week intervals in the non-rainy season to verify continued BMP implementation. - Inspect BMPs subject to non-stormwater discharge daily while non-stormwater discharges occur. - Keep ample supplies of spill control and cleanup materials onsite, near storage, unloading, and maintenance areas. - Update your spill prevention and control plan and stock cleanup materials as changes occur in the types of chemicals onsite. ### References Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995. Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. Stormwater Management for Construction Activities; Developing Pollution Prevention Plans and Best Management Practice, EPA 832-R-92005; USEPA, April 1992. ### **Objectives** EC Erosion Control SE Sediment Control TC Tracking Control WE Wind Erosion Control NS Non-Stormwater Management Control Waste Management and Materials Pollution Control #### Legend: - ✓ Primary Objective - ✓ Secondary Objective ### **Description and Purpose** Solid waste management procedures and practices are designed to prevent or reduce the discharge of pollutants to stormwater from solid or construction waste by providing designated waste collection areas and containers, arranging for regular disposal, and training employees and subcontractors. ### **Suitable Applications** This BMP is suitable for construction sites where the following wastes are generated or stored: - Solid waste generated from trees and shrubs removed during land clearing, demolition of existing structures (rubble), and building construction - Packaging materials including wood, paper, and plastic - Scrap or surplus building materials including scrap metals, rubber, plastic, glass pieces and masonry products - Domestic wastes including food containers such as beverage cans, coffee cups, paper bags, plastic wrappers, and cigarettes - Construction wastes including brick, mortar, timber, steel and metal scraps, pipe and electrical cuttings, nonhazardous equipment parts, styrofoam and other materials used to transport and package construction materials ### **Targeted Constituents** | Sediment | ✓ | |----------------|---| | Nutrients | ✓ | | Trash | ✓ | | Metals | ✓ | | Bacteria | | | Oil and Grease | ✓ | #### **Potential Alternatives** None **Organics** ## **Solid Waste Management** Highway planting wastes, including vegetative material, plant containers, and packaging materials ### Limitations Temporary stockpiling of certain construction wastes may not necessitate stringent drainage related controls during the non-rainy season or in desert areas with low rainfall. ### **Implementation** The following steps will help keep a clean site and reduce stormwater pollution: - Select designated waste collection areas onsite. - Inform trash-hauling contractors that you will accept only watertight dumpsters for onsite use. Inspect dumpsters for leaks and repair any dumpster that is not watertight. - Locate containers in a covered area or in a secondary containment. - Provide an adequate number of containers with lids or covers that can be placed over the container to keep rain out or to prevent loss of wastes when it is windy. - Plan for additional containers and more frequent pickup during the demolition phase of construction. - Collect site trash daily, especially during rainy and windy conditions. - Remove this solid waste promptly since erosion and sediment control devices tend to collect litter. - Make sure that toxic liquid wastes (used oils, solvents, and paints) and chemicals (acids, pesticides, additives, curing compounds) are not disposed of in dumpsters designated for
construction debris. - Do not hose out dumpsters on the construction site. Leave dumpster cleaning to the trash hauling contractor. - Arrange for regular waste collection before containers overflow. - Clean up immediately if a container does spill. - Make sure that construction waste is collected, removed, and disposed of only at authorized disposal areas. ### **Education** - Have the contractor's superintendent or representative oversee and enforce proper solid waste management procedures and practices. - Instruct employees and subcontractors on identification of solid waste and hazardous waste. - Educate employees and subcontractors on solid waste storage and disposal procedures. - Hold regular meetings to discuss and reinforce disposal procedures (incorporate into regular safety meetings). - Require that employees and subcontractors follow solid waste handling and storage procedures. - Prohibit littering by employees, subcontractors, and visitors. - Minimize production of solid waste materials wherever possible. ### Collection, Storage, and Disposal - Littering on the project site should be prohibited. - To prevent clogging of the storm drainage system, litter and debris removal from drainage grates, trash racks, and ditch lines should be a priority. - Trash receptacles should be provided in the contractor's yard, field trailer areas, and at locations where workers congregate for lunch and break periods. - Litter from work areas within the construction limits of the project site should be collected and placed in watertight dumpsters at least weekly, regardless of whether the litter was generated by the contractor, the public, or others. Collected litter and debris should not be placed in or next to drain inlets, stormwater drainage systems, or watercourses. - Dumpsters of sufficient size and number should be provided to contain the solid waste generated by the project. - Full dumpsters should be removed from the project site and the contents should be disposed of by the trash hauling contractor. - Construction debris and waste should be removed from the site biweekly or more frequently as needed. - Construction material visible to the public should be stored or stacked in an orderly manner. - Stormwater runon should be prevented from contacting stored solid waste through the use of berms, dikes, or other temporary diversion structures or through the use of measures to elevate waste from site surfaces. - Solid waste storage areas should be located at least 50 ft from drainage facilities and watercourses and should not be located in areas prone to flooding or ponding. - Except during fair weather, construction and highway planting waste not stored in watertight dumpsters should be securely covered from wind and rain by covering the waste with tarps or plastic. - Segregate potentially hazardous waste from non-hazardous construction site waste. - Make sure that toxic liquid wastes (used oils, solvents, and paints) and chemicals (acids, pesticides, additives, curing compounds) are not disposed of in dumpsters designated for construction debris. - For disposal of hazardous waste, see WM-6, Hazardous Waste Management. Have hazardous waste hauled to an appropriate disposal and/or recycling facility. - Salvage or recycle useful vegetation debris, packaging and surplus building materials when practical. For example, trees and shrubs from land clearing can be used as a brush barrier, or converted into wood chips, then used as mulch on graded areas. Wood pallets, cardboard boxes, and construction scraps can also be recycled. #### **Costs** All of the above are low cost measures. ### **Inspection and Maintenance** - Inspect and verify that activity—based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect weekly during the rainy season and of two-week intervals in the non-rainy season to verify continued BMP implementation. - Inspect BMPs subject to non-stormwater discharge daily while non-stormwater discharges occur - Inspect construction waste area regularly. - Arrange for regular waste collection. #### References Processes, Procedures and Methods to Control Pollution Resulting from All Construction Activity, 430/9-73-007, USEPA, 1973. Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. Stormwater Management for Construction Activities; Developing Pollution Prevention Plans and Best Management Practice, EPA 832-R-92005; USEPA, April 1992. ### **Objectives** EC Erosion Control SE Sediment Control TC Tracking Control WE Wind Erosion Control Non-Stormwater Management Control Waste Management and Materials Pollution Control #### Legend: - ✓ Primary Objective - ✓ Secondary Objective ### **Description and Purpose** Prevent or reduce the discharge of pollutants to stormwater from concrete waste by conducting washout offsite, performing onsite washout in a designated area, and training employee and subcontractors. ### **Suitable Applications** Concrete waste management procedures and practices are implemented on construction projects where: - Concrete is used as a construction material or where concrete dust and debris result form demolition activities - Slurries containing portland cement concrete (PCC) or asphalt concrete (AC) are generated, such as from saw cutting, coring, grinding, grooving, and hydro-concrete demolition - Concrete trucks and other concrete-coated equipment are washed onsite - Mortar-mixing stations exist - See also NS-8, Vehicle and Equipment Cleaning #### **Limitations** Offsite washout of concrete wastes may not always be possible. #### **Potential Alternatives** None ## WM-8 Concrete Waste Management ### **Implementation** The following steps will help reduce stormwater pollution from concrete wastes: - Discuss the concrete management techniques described in this BMP (such as handling of concrete waste and washout) with the ready-mix concrete supplier before any deliveries are made. - Incorporate requirements for concrete waste management into material supplier and subcontractor agreements. - Store dry and wet materials under cover, away from drainage areas. - Avoid mixing excess amounts of fresh concrete. - Perform washout of concrete trucks offsite or in designated areas only. - Do not wash out concrete trucks into storm drains, open ditches, streets, or streams. - Do not allow excess concrete to be dumped onsite, except in designated areas. - For onsite washout: - Locate washout area at least 50 feet from storm drains, open ditches, or water bodies. Do not allow runoff from this area by constructing a temporary pit or bermed area large enough for liquid and solid waste. - Wash out wastes into the temporary pit where the concrete can set, be broken up, and then disposed properly. - Avoid creating runoff by draining water to a bermed or level area when washing concrete to remove fine particles and expose the aggregate. - Do not wash sweepings from exposed aggregate concrete into the street or storm drain. Collect and return sweepings to aggregate base stockpile or dispose in the trash. #### Education - Educate employees, subcontractors, and suppliers on the concrete waste management techniques described herein. - Arrange for contractor's superintendent or representative to oversee and enforce concrete waste management procedures. ### **Concrete Slurry Wastes** - PCC and AC waste should not be allowed to enter storm drains or watercourses. - PCC and AC waste should be collected and disposed of or placed in a temporary concrete washout facility. - A sign should be installed adjacent to each temporary concrete washout facility to inform concrete equipment operators to utilize the proper facilities. www.cabmphandbooks.com - Below grade concrete washout facilities are typical. Above grade facilities are used if excavation is not practical. - A foreman or construction supervisor should monitor onsite concrete working tasks, such as saw cutting, coring, grinding and grooving to ensure proper methods are implemented. - Saw-cut PCC slurry should not be allowed to enter storm drains or watercourses. Residue from grinding operations should be picked up by means of a vacuum attachment to the grinding machine. Saw cutting residue should not be allowed to flow across the pavement and should not be left on the surface of the pavement. See also NS-3, Paving and Grinding Operations; and WM-10, Liquid Waste Management. - Slurry residue should be vacuumed and disposed in a temporary pit (as described in OnSite Temporary Concrete Washout Facility, Concrete Transit Truck Washout Procedures, below) and allowed to dry. Dispose of dry slurry residue in accordance with WM-5, Solid Waste Management. ## Onsite Temporary Concrete Washout Facility, Transit Truck Washout Procedures - Temporary concrete washout facilities should be located a minimum of 50 ft from storm drain inlets, open drainage facilities, and watercourses. Each facility should be located away from construction traffic or access areas to prevent disturbance or tracking. - A sign should be installed adjacent to each washout facility to inform concrete equipment operators to utilize the proper facilities. - Temporary concrete washout facilities should be constructed above grade or below grade at the option of the contractor. Temporary concrete washout facilities should be constructed and maintained in sufficient quantity and size to contain all liquid and concrete waste generated by washout operations. - Temporary washout facilities should have a temporary pit or bermed areas of sufficient volume to completely contain all liquid and waste concrete materials generated during washout procedures. - Washout of concrete trucks should be performed in designated areas only. - Only concrete from mixer truck chutes should be washed into concrete wash out. - Concrete washout
from concrete pumper bins can be washed into concrete pumper trucks and discharged into designated washout area or properly disposed of offsite. - Once concrete wastes are washed into the designated area and allowed to harden, the concrete should be broken up, removed, and disposed of per WM-5, Solid Waste Management. Dispose of hardened concrete on a regular basis. - Temporary Concrete Washout Facility (Type Above Grade) - Temporary concrete washout facility (type above grade) should be constructed as shown on the details at the end of this BMP, with a recommended minimum length and ## WM-8 Concrete Waste Management minimum width of 10 ft, but with sufficient quantity and volume to contain all liquid and concrete waste generated by washout operations. - Straw bales, wood stakes, and sandbag materials should conform to the provisions in SE-9, Straw Bale Barrier. - Plastic lining material should be a minimum of 10 mil in polyethylene sheeting and should be free of holes, tears, or other defects that compromise the impermeability of the material. - Temporary Concrete Washout Facility (Type Below Grade) - Temporary concrete washout facilities (type below grade) should be constructed as shown on the details at the end of this BMP, with a recommended minimum length and minimum width of 10 ft. The quantity and volume should be sufficient to contain all liquid and concrete waste generated by washout operations. - Lath and flagging should be commercial type. - Plastic lining material should be a minimum of 10 mil polyethylene sheeting and should be free of holes, tears, or other defects that compromise the impermeability of the material. ### Removal of Temporary Concrete Washout Facilities - When temporary concrete washout facilities are no longer required for the work, the hardened concrete should be removed and disposed of. Materials used to construct temporary concrete washout facilities should be removed from the site of the work and disposed of. - Holes, depressions or other ground disturbance caused by the removal of the temporary concrete washout facilities should be backfilled and repaired. #### **Costs** All of the above are low cost measures. #### **Inspection and Maintenance** - Inspect and verify that activity—based BMPs are in place prior to the commencement of associated activities. While activities associated with the BMP are under way, inspect weekly during the rainy season and of two-week intervals in the non-rainy season to verify continued BMP implementation. - Temporary concrete washout facilities should be maintained to provide adequate holding capacity with a minimum freeboard of 4 in. for above grade facilities and 12 in. for below grade facilities. Maintaining temporary concrete washout facilities should include removing and disposing of hardened concrete and returning the facilities to a functional condition. Hardened concrete materials should be removed and disposed of. - Washout facilities must be cleaned, or new facilities must be constructed and ready for use once the washout is 75% full. ### References Blueprint for a Clean Bay: Best Management Practices to Prevent Stormwater Pollution from Construction Related Activities; Santa Clara Valley Nonpoint Source Pollution Control Program, 1995. Stormwater Quality Handbooks - Construction Site Best Management Practices (BMPs) Manual, State of California Department of Transportation (Caltrans), November 2000. Stormwater Management for Construction Activities; Developing Pollution Prevention Plans and Best Management Practice, EPA 832-R-92005; USEPA, April 1992.